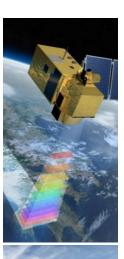
Landwirtschaft

SPEEDING UP INNOVATION

KÜNSTLICHE INTELLIGENZ IN DER LANDWIRTSCHAFT

SatGrass: Satellitenbasierte Schätzung von Grünlandertrag und Futterqualität

Andreas Schaumberger



SPEEDING UP INNOVATION VETZUNG VON VUNG UND PRAXIS Künstliche Intelligenz in der Landwirtschaft

Von der Machbarkeitsstudie zum Forschungsprojekt

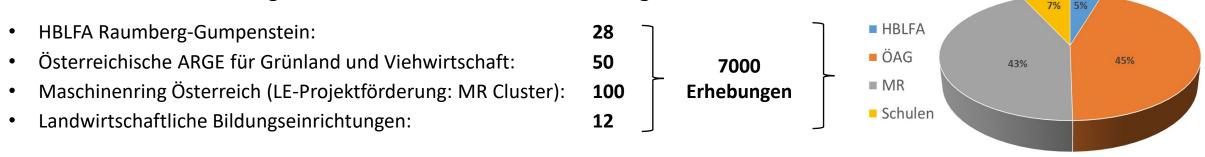
2018 – 2020: Pilotprojekt an der HBLFA Raumberg-Gumpenstein als Machbarkeitsstudie

Ende 2019: Projekteinreichung im Rahmen des Österreichischen Weltraumprogramms (ASAP) der FFG

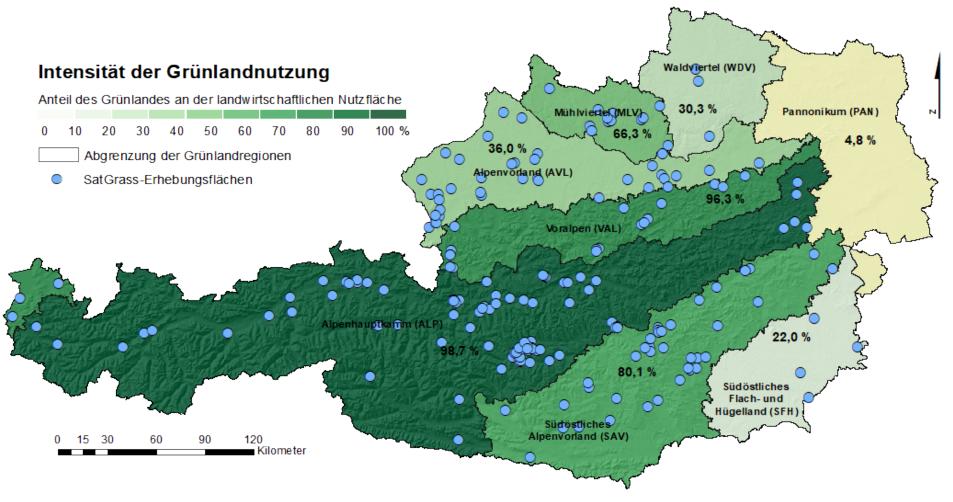
Unterstützung der Projektidee:

- Landwirtschaftskammer Österreich
- Österreichischer Bauernbund
- Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft
- Statistik Austria
- Umweltbundesamt
- Maschinenring Österreich
- Hagelversicherung
- Forschungsförderungsgesellschaft (FFG)

Vom Forschungsprojekt zur Anwendung


- Sechs Jahre interdisziplinäre Forschung: Grünlandwirtschaft Fernerkundung Meteorologie
- Kooperation zwischen Landwirtschaft und Wissenschaft:
 - 190 Landwirte, ÖAG, Maschinenring, Landwirtschaftskammer
 - HBLFA, BOKU, TU Wien, GeoSphere Austria
- Einzigartige Datengrundlage:
 - Über 7000 Erhebungen zu Schnittzeitpunkten, Erträgen und Futterqualitäten auf
 - 190 Mähwiesen mit Ertragsmessungen und Beobachtungen im Abstand von etwa 2 Wochen
 - Verteilung der Standorte auf alle Grünlandregionen Österreichs
- Ziel: Hohe Genauigkeit und breite Anwendbarkeit der Ertrags- und Futterqualitätsschätzung
- Potenzielle Anwender: 53.000 Grünlandbetriebe, BML, Statistik Austria, EUROSTAT, Landwirtschaftskammern, Hagelversicherung, Forschungseinrichtungen

SPEEDING UP INNOVATION METZUNG VON MUNG UND PRAXIS Künstliche Intelligenz in der Landwirtschaft


Komponenten und Erhebungen im Projekt SatGrass

Anzahl der von den beteiligten Institutionen betreuten Erhebungsstandorte:

Verteilung der Erhebungsflächen auf die Grünlandregionen Österreichs

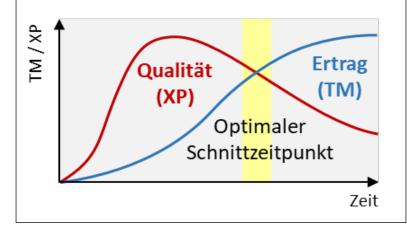
Datenerhebungen am Feld als Grundlage für SatGrass

Mobile Applikation für Android- und Apple-Smarthphones:

- Qualitätssicherung: Standardisierte Erhebung (Schritt-für-Schritt-Anleitung mit Erklärungen)
- Datensicherung: Daten werden direkt beim Eingeben in einer zentralen Datenbank übertragen
- Logistische Vereinfachung: keine Zettelwirtschaft

Erhebungsparameter im Feld:

- Projektive Deckung und Artengruppenverhältnis
- Wuchshöhe (Zollstock und Rising Plate Meter)
- Blattflächenindex (AccuPAR LP-80)
- Frischmasseertrag (in dreifacher Wiederholung)
- Schnittzeitpunkt (Ernte der Gesamtfläche)


Erhebungsparameter im Labor:

Labortrocknung, Trockenmassebestimmung und Futteranalyse (Rückstellproben für weitere Auswertungen)

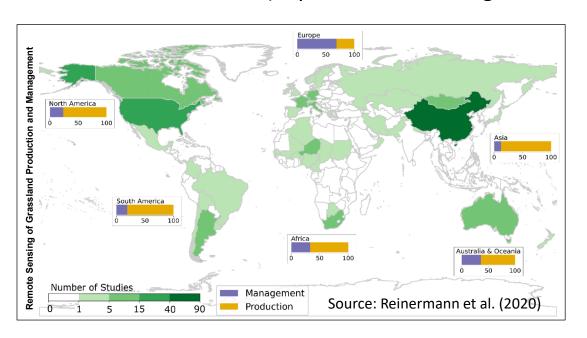
Zielsetzung und potenzielle Anwendungsbereiche von SatGrass

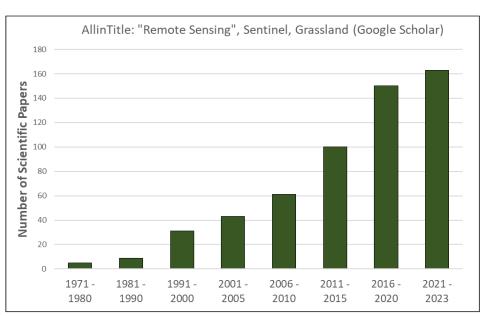
Landwirtschaftliche Betriebe

- Optimales Verhältnis von Ertrag und Qualität - Schnittzeitpunkt
- Berechnungsbasis für Futterrationen oder Düngung

Regionale Anwendung (Produktionsgebiete, Verwaltungseinheiten)

Beratung und Agrarpolitik


- Informationen für Berater und Entscheidungsträger
- Grundlage für Grünlanddaten in der Landwirtschaftlichen Gesamtrechnung
- Strategische Überlegungen zur Erhaltung des ländlichen Raums


Risikomanagement

- Regionale Futterbilanzen
- Beschreibung der Veränderungen von Ertragspotenzialen unter dem Einfluss des Klimawandels
- Grundlage für Unterstützungen und Kompensationen

Internationale Vernetzung und Forschung zum Thema

- Flagship Project of Global Research Alliance (GRA): Satellite Monitoring to improve Livestock Management
- Wissenschaftlicher Austausch mit **FONTAGRO** (Lateinamerika, Karibik und Spanien)
- Partner in MODCiX (Mowing detection intercomparison exercise): Europaweite Auswertung von Grünlandschnittdaten
- Associate Partner im ESA-Projekt YIPEEO (Yield Predicition and Estimation from Earth Observation)
- Partnerschaft mit der LFL (Bayernweite Erfassung von Schnitt, Ertrag und Futterqualität)

Wissenschaftliche Ergebnisse als Grundlage für eine SatGrass-Anwendung

Veröffentlicht:

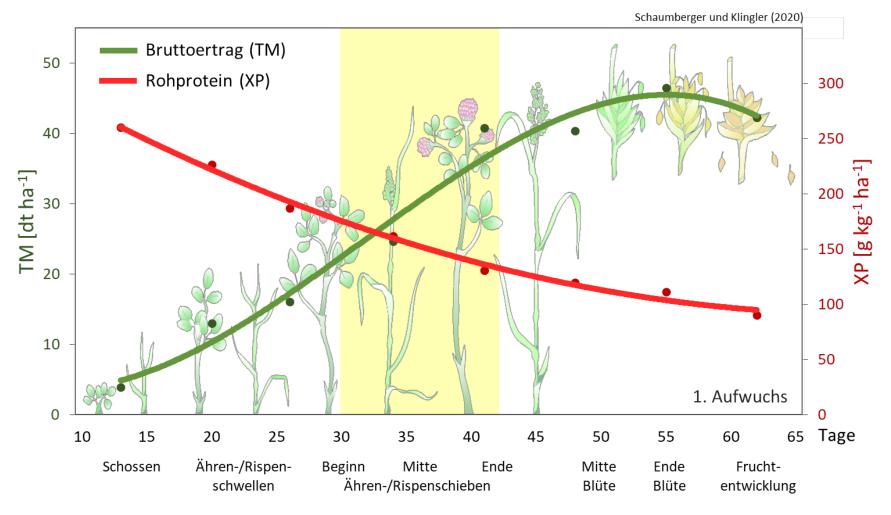
- Blattflächenindex im Grünland
- Schnitterkennung mit Multispektraldaten (Sentinel-2)
- Schnitterkennung mit SAR-Daten (Sentinel-1)
- Beginn der Vegetationsperiode aus Satellitendaten

Eingereicht:

 Verbesserte Schnitterkennung mit einer Kombination aus Sentinel-1 und Sentinel-2

In Bearbeitung:

- Ertrags- und Futterqualitätsschätzung auf Basis von Satelliten- und Wetterdaten
- Ausgewählte Daten als Scientific Data Paper


Check for

Grassland cut detection based on Sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding

Cody Watzig ^a, Andreas Schaumberger ^b, Andreas Klingler ^b, Aleksandar Dujakovic ^a, Clement Atzberger ^a, Francesco Vuolo ^{a,*}

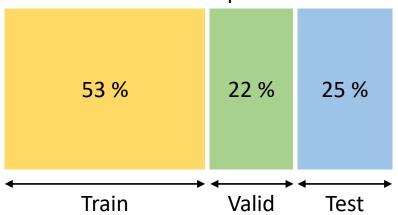
Künstliche Intelligenz in der Landwirtschaft

Dynamik von Ertrag und Futterqualität

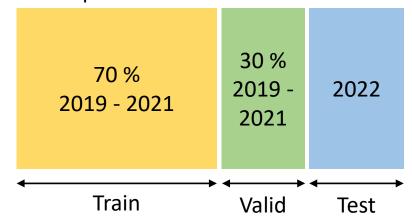
SPEEDING UP INNOVATION ETZUNG VON VUNG UND PRAXIS Künstliche Intelligenz in der Landwirtschaft

Anforderungen an das Modell

- Österreichweite Anwendbarkeit
- Ergebnisse in "Near-Real-Time"
- Hohe Genauigkeit
- Robuste Ergebnisse
 - Jahre
 - Witterungssituationen
 - Regionen
 - Aufwüchse
 - Nutzungsintensitäten
- Ausschließliche Verwendung von Daten, die frei zugänglich und vollflächig verfügbar sind
- Keine Managementinformationen oder sonstigen manuellen Eingaben

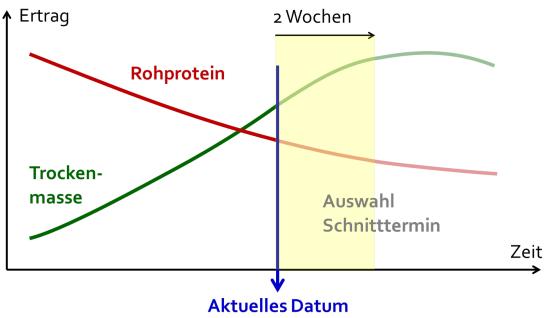

Mit KI (Bing Creator) erstellt · 6. November 2023

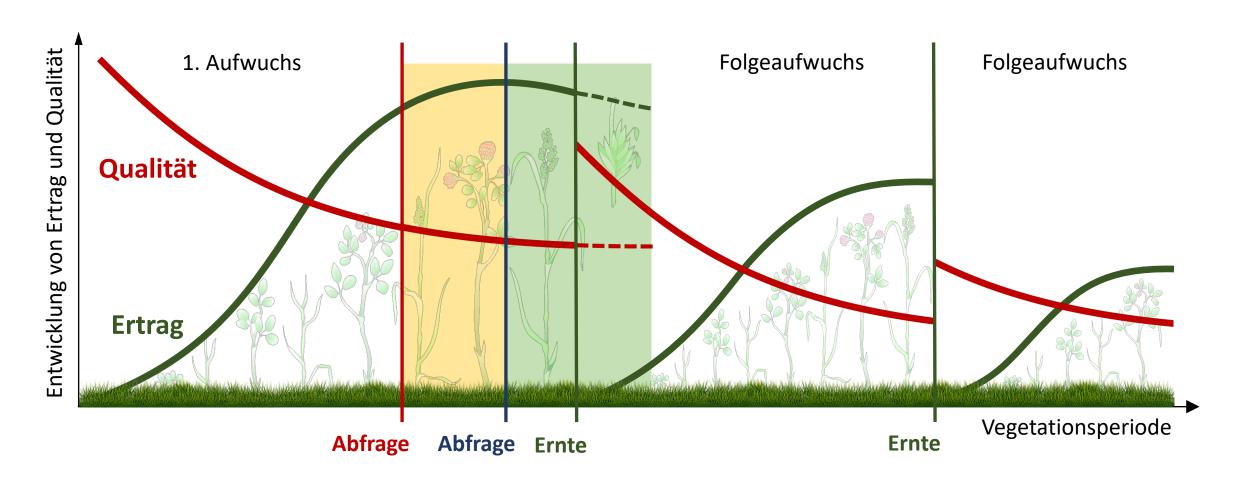
SPEEDING UP INNOVATION ETZUNG VON UNG UND PRAXIS Künstliche Intelligenz in der Landwirtschaft


Wichtigkeit des Datensplits

- Vermeidung von Overfitting:
 - Modell soll nicht nur auf den Trainingsdaten funktionieren
- Effektives Hyperparameter-Tuning
 - Optimierung durch ein Validierungsset
- Realistische Bewertung der Modellleistung
 - Durch separates Testset

Randomisierter Datensplit


Datensplit nach Jahren


SatGrass: Anwendungsschritte – Landwirtschaftlicher Betrieb (exklusiv)

- 1. Auswahl des Feldstücks auf einer Karte
- 2. Anzeige des Ertrages und der Futterqualität zum Zeitpunkt der Abfrage sowie als Kurven mit dem bisherigen Verlauf seit Beginn des aktuellen Aufwuchses
- 3. Weiterführung der Kurven in eine Zukunft von etwa 2 Wochen mit der Anzeige des zu erwartenden Ertrages und der dazugehörigen Futterqualität
- 4. Anzeige von **langjährigen Durch- schnitten** und deren Vergleich
 mit aktuellen Ergebnissen
- **5. Ausgabemöglichkeit der Daten** für die Flächen eines Betriebes

Anwendungsbeispiel: Wahl des optimalen Schnittzeitpunktes

SatGrass: Anwendungsschritte – Regionale Auswertung (allgemein)

- 1. Auswahl einer oder **mehrerer Verwaltungseinheiten** (Gemeinde, Bezirk, Bundesland, Bund) oder Regionen (Kleinoder Hauptproduktionsgebiete, Grünlandregionen, Klimaregionen, Einzugsgebiete, ...)
- 2. Ausgabe von Ertrag und Futterqualität zum Zeitpunkt der Abfrage als Summe über alle Flächen
- 3. Ausgabe von **langjährigen Durchschnitten**, einzelnen Jahresergebnissen und deren Abweichungen für die ausgewählten räumlichen Einheiten

Im Gegensatz zu den Auswertungen auf Feldstücks- und Betriebsebene, soll die Benutzung frei zugänglich oder auf bestimmte Institutionen individuell abgestimmt sein.

Mögliche Anwender:

BML, Landwirtschaftskammern, Maschinenring Österreich, Statistik Austria, Umweltbundesamt, Hagelversicherung, Forschung, Medien, ...

SatGrass: Digitalisierung für die österreichische Grünlandwirtschaft

Mit KI (Bing Creator) erstellt · 6. November 2023

- Datenerhebungen über mehrere Jahre in allen Grünlandregionen und mehrmals pro Aufwuchs
- Interdisziplinäre Zusammenarbeit aus den Bereichen Grünlandforschung, Fernerkundung und Meteorologie
- Erfolgreiche Zusammenarbeit mit Landwirten und landwirtschaftlichen Organisationen
- Einsatz von KI (Deep Learning) für die Modellierung von Ertrag und Futterqualität
- Werkzeug für die praktische Landwirtschaft und für verschiedene Agrarinstitutionen